openssl_seal

(PHP 4 >= 4.0.4, PHP 5, PHP 7)

openssl_sealSeal (encrypt) data

설명

int openssl_seal ( string $data , string &$sealed_data , array &$env_keys , array $pub_key_ids [, string $method = "RC4" ] )

openssl_seal() seals (encrypts) data by using the given method with a randomly generated secret key. The key is encrypted with each of the public keys associated with the identifiers in pub_key_ids and each encrypted key is returned in env_keys. This means that one can send sealed data to multiple recipients (provided one has obtained their public keys). Each recipient must receive both the sealed data and the envelope key that was encrypted with the recipient's public key.

인수

data

The data to seal.

sealed_data

The sealed data.

env_keys

Array of encrypted keys.

pub_key_ids

Array of public key resource identifiers.

method

The cipher method.

반환값

Returns the length of the sealed data on success, or FALSE on error. If successful the sealed data is returned in sealed_data, and the envelope keys in env_keys.

예제

Example #1 openssl_seal() example

<?php
// $data is assumed to contain the data to be sealed

// fetch public keys for our recipients, and ready them
$fp fopen("/src/openssl-0.9.6/demos/maurice/cert.pem""r");
$cert fread($fp8192);
fclose($fp);
$pk1 openssl_get_publickey($cert);
// Repeat for second recipient
$fp fopen("/src/openssl-0.9.6/demos/sign/cert.pem""r");
$cert fread($fp8192);
fclose($fp);
$pk2 openssl_get_publickey($cert);

// seal message, only owners of $pk1 and $pk2 can decrypt $sealed with keys
// $ekeys[0] and $ekeys[1] respectively.
openssl_seal($data$sealed$ekeys, array($pk1$pk2));

// free the keys from memory
openssl_free_key($pk1);
openssl_free_key($pk2);
?>

변경점

버전 설명
5.3.0 The method parameter was added.

참고

add a note add a note

User Contributed Notes 6 notes

up
5
Dominik M.
4 years ago
Please note that openssl_seal() cannot be used for EC encryption.
Took me literally two hours to find out because the OpenSSL documentation is so bad.
up
9
amer.alhabsi AT gmail DOT com
8 years ago
while the default is using RC4, it is possible to use other more secure algorithms. These are specified as the fifth parameter. Also, one needs to add an initialization vector (random bytes). Eg.

<?php
    $data
= "This is top secret.";
   
// fetch public keys for our recipients, and ready them
   
$cert = file_get_contents('./cert.pem');

   
$pk1 = openssl_get_publickey($cert);
   
$iv = openssl_random_pseudo_bytes(32);
   
openssl_seal($data, $sealed, $ekeys, array($pk1), "AES256", $iv);

   
// free the keys from memory
   
openssl_free_key($pk1);
    echo
base64_encode($sealed);
?>
up
3
aaron dot lawrence at umajin dot com
3 years ago
Some critical details that are not in the docs, nor widely written about elsewhere.

- The envelope key is a 128-bit RSA key, randomly generated.
- The data is encrypted with (A)RC4 using the envelope key.
- The envelope key is encrypted for transmission with PKCS1 v1.5. It is NOT the OAEP padding variant.  PKCS1 v1.5 is even older, and not widely supported anymore.

At least this was true for openssl_seal in PHP 7.2 that we are using.

(Note: In Python you can decrypt this envelope key with the Cryptography package, using padding.PKCS1v15())

The combination of RC4 and PKCS1 v1.5 make this function actually semi-obsolete for security use in my opinion.
up
5
devel@no-spam
19 years ago
"seals (encrypts) data by using RC4 with a randomly generated secret key"
It should be noted that the randomly generated secret key is 128 bits long (openssl: EVP_rc4(void):  RC4 stream cipher. This is a variable key length cipher with default key length 128 bits.)
up
5
bowfingermail at gmx dot net
9 years ago
According to several sources (e.g. crypto101.io or Wikipedia) RC4 is not safe and not supposed to be used anymore.
So, shouldn't openssl_seal use another stream cipher in place of RC4?
up
-4
hfuecks at nospam dot org
17 years ago
openssl_seal() can work well when you need to pass data securely to other platforms / languages. What openssl_seal() does is;

1. Generate a random key
2. Encrypt the data symmetrically with RC4 using the random key
3. Encrypt the random key itself with RSA using the public key / certificate
4. Returns the encrypted data and the encrypted key

So to decrypt the steps are simply;

1. Decrypt the key using RSA and your private key
2. Decrypt the data using RC4 and the decrypted key

The trickiest part may be figuring out how handle the private key - BouncyCastle ( http://www.bouncycastle.org/ ) provides a PEMReader for Java and C# while Not Yet commons-ssl ( http://juliusdavies.ca/commons-ssl/ ) has a KeyStoreBuilder to build Java keystores out of a PEM certificate.

A complete example in Java is described at http://blog.local.ch/archive/2007/10/29/openssl-php-to-java.html
To Top